Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (n+1.1111)(1.1143-n) = (n+1.116)(1.1111-n) .
    Question type: Equation
    Solution:Original question:
     ( n +
11111
10000
)(
11143
10000
n ) = ( n +
279
250
)(
11111
10000
n )
    Remove the bracket on the left of the equation:
     Left side of the equation = n (
11143
10000
n ) +
11111
10000
(
11143
10000
n )
                                             = n ×
11143
10000
n n +
11111
10000
(
11143
10000
n )
                                             =
11143
10000
n n n +
11111
10000
×
11143
10000
11111
10000
n
                                             =
11143
10000
n n n +
123809873
100000000
11111
10000
n
                                             =
2
625
n n n +
123809873
100000000
    The equation is transformed into :
     
2
625
n n n +
123809873
100000000
= ( n +
279
250
)(
11111
10000
n )
    Remove the bracket on the right of the equation:
     Right side of the equation = n (
11111
10000
n ) +
279
250
(
11111
10000
n )
                                               = n ×
11111
10000
n n +
279
250
(
11111
10000
n )
                                               =
11111
10000
n n n +
279
250
×
11111
10000
279
250
n
                                               =
11111
10000
n n n +
3099969
2500000
279
250
n
                                               = -
49
10000
n n n +
3099969
2500000
    The equation is transformed into :
     
2
625
n n n +
123809873
100000000
= -
49
10000
n n n +
3099969
2500000

    
        n≈0.233194 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。