Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2*d+2)/[(d+2)*(d+2)+1] = 1/(d+1)1 .
    Question type: Equation
    Solution:Original question:
     (2 d + 2) ÷ (( d + 2)( d + 2) + 1) = 1 ÷ ( d + 1) × 1
     Multiply both sides of the equation by:(( d + 2)( d + 2) + 1) ,  ( d + 1)
     (2 d + 2)( d + 1) = 1 × 1(( d + 2)( d + 2) + 1)
    Remove a bracket on the left of the equation::
     2 d ( d + 1) + 2( d + 1) = 1 × 1(( d + 2)( d + 2) + 1)
    Remove a bracket on the right of the equation::
     2 d ( d + 1) + 2( d + 1) = 1 × 1( d + 2)( d + 2) + 1 × 1 × 1
    The equation is reduced to :
     2 d ( d + 1) + 2( d + 1) = 1( d + 2)( d + 2) + 1
    Remove a bracket on the left of the equation:
     2 d d + 2 d × 1 + 2( d + 1) = 1( d + 2)( d + 2) + 1
    Remove a bracket on the right of the equation::
     2 d d + 2 d × 1 + 2( d + 1) = 1 d ( d + 2) + 1 × 2( d + 2) + 1
    The equation is reduced to :
     2 d d + 2 d + 2( d + 1) = 1 d ( d + 2) + 2( d + 2) + 1
    Remove a bracket on the left of the equation:
     2 d d + 2 d + 2 d + 2 × 1 = 1 d ( d + 2) + 2( d + 2) + 1
    Remove a bracket on the right of the equation::
     2 d d + 2 d + 2 d + 2 × 1 = 1 d d + 1 d × 2 + 2( d + 2) + 1
    The equation is reduced to :
     2 d d + 2 d + 2 d + 2 = 1 d d + 2 d + 2( d + 2) + 1
    The equation is reduced to :
     2 d d + 4 d + 2 = 1 d d + 2 d + 2( d + 2) + 1
    Remove a bracket on the right of the equation::
     2 d d + 4 d + 2 = 1 d d + 2 d + 2 d + 2 × 2 + 1
    The equation is reduced to :
     2 d d + 4 d + 2 = 1 d d + 2 d + 2 d + 4 + 1
    The equation is reduced to :
     2 d d + 4 d + 2 = 1 d d + 4 d + 5

    After the equation is converted into a general formula, it is converted into:
    ( d + √3 )( d - √3 )=0
    From
        d + √3 = 0
        d - √3 = 0

    it is concluded that::
        d1=-√3
        d2=√3
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。