Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/((x+3)(x+3))+1/(xx) = 1/((3-x)(3-x)) .
    Question type: Equation
    Solution:Original question:
     1 ÷ (( x + 3)( x + 3)) + 1 ÷ ( x x ) = 1 ÷ ((3 x )(3 x ))
     Multiply both sides of the equation by:(( x + 3)( x + 3)) ,  ((3 x )(3 x ))
     1((3 x )(3 x )) + 1 ÷ ( x x ) × (( x + 3)( x + 3))((3 x )(3 x )) = 1(( x + 3)( x + 3))
    Remove a bracket on the left of the equation::
     1(3 x )(3 x ) + 1 ÷ ( x x ) × (( x + 3)( x + 3))((3 x )(3 x )) = 1(( x + 3)( x + 3))
    Remove a bracket on the right of the equation::
     1(3 x )(3 x ) + 1 ÷ ( x x ) × (( x + 3)( x + 3))((3 x )(3 x )) = 1( x + 3)( x + 3)
     Multiply both sides of the equation by:( x x )
     1(3 x )(3 x )( x x ) + 1(( x + 3)( x + 3))((3 x )(3 x )) = 1( x + 3)( x + 3)( x x )
    Remove a bracket on the left of the equation:
     1 × 3(3 x )( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3))((3 x )(3 x )) = 1( x + 3)( x + 3)( x x )
    Remove a bracket on the right of the equation::
     1 × 3(3 x )( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3))((3 x )(3 x )) = 1 x ( x + 3)( x x ) + 1 × 3( x + 3)( x x )
    The equation is reduced to :
     3(3 x )( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3))((3 x )(3 x )) = 1 x ( x + 3)( x x ) + 3( x + 3)( x x )
    Remove a bracket on the left of the equation:
     3 × 3( x x )3 x ( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3)) = 1 x ( x + 3)( x x ) + 3( x + 3)( x x )
    Remove a bracket on the right of the equation::
     3 × 3( x x )3 x ( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3)) = 1 x x ( x x ) + 1 x × 3( x x ) + 3( x + 3)( x x )
    The equation is reduced to :
     9( x x )3 x ( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3))((3 x )(3 x )) = 1 x x ( x x ) + 3 x ( x x ) + 3( x + 3)( x x )
    Remove a bracket on the left of the equation:
     9 x x 3 x ( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3)) = 1 x x ( x x ) + 3 x ( x x ) + 3( x + 3)( x x )
    Remove a bracket on the right of the equation::
     9 x x 3 x ( x x )1 x (3 x )( x x ) + 1(( x + 3)( x + 3)) = 1 x x x x + 3 x ( x x ) + 3( x + 3)( x x )
    Remove a bracket on the left of the equation:
     9 x x 3 x x x 1 x (3 x )( x x ) + 1 = 1 x x x x + 3 x ( x x ) + 3( x + 3)( x x )
    Remove a bracket on the right of the equation::
     9 x x 3 x x x 1 x (3 x )( x x ) + 1 = 1 x x x x + 3 x x x + 3( x + 3)( x x )
    Remove a bracket on the left of the equation:
     9 x x 3 x x x 1 x × 3( x x ) + 1 = 1 x x x x + 3 x x x + 3( x + 3)( x x )
    Remove a bracket on the right of the equation::
     9 x x 3 x x x 1 x × 3( x x ) + 1 = 1 x x x x + 3 x x x + 3 x ( x x )
    The equation is reduced to :
     9 x x 3 x x x 3 x ( x x ) + 1 x = 1 x x x x + 3 x x x + 3 x ( x x )
    Remove a bracket on the left of the equation:
     9 x x 3 x x x 3 x x x + 1 = 1 x x x x + 3 x x x + 3 x ( x x )
    Remove a bracket on the right of the equation::
     9 x x 3 x x x 3 x x x + 1 = 1 x x x x + 3 x x x + 3 x x
    Remove a bracket on the left of the equation:
     9 x x 3 x x x 3 x x x + 1 = 1 x x x x + 3 x x x + 3 x x
    Remove a bracket on the right of the equation::
     9 x x 3 x x x 3 x x x + 1 = 1 x x x x + 3 x x x + 3 x x
    Remove a bracket on the left of the equation:
     9 x x 3 x x x 3 x x x + 1 = 1 x x x x + 3 x x x + 3 x x

    After the equation is converted into a general formula, there is a common factor:
    ( 1000x - √177351207 )
    From
        1000x - √177351207 = 0

    it is concluded that::
        x1=
√177351207
1000

    Solutions that cannot be obtained by factorization:
        x2≈1.540859 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。