Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (a-40)(200+20(100-a))-2000 = 22500 .
    Question type: Equation
    Solution:Original question:
     ( a 40)(200 + 20(100 a ))2000 = 22500
    Remove the bracket on the left of the equation:
     Left side of the equation = a (200 + 20(100 a ))40(200 + 20(100 a ))2000
                                             = a × 200 + a × 20(100 a )40(200 + 20(100 a ))2000
                                             = 200 a + a × 20 × 100 a × 20 a 40(200 + 20(100 a ))2000
                                             = 200 a + a × 2000 a × 20 a 40(200 + 20(100 a ))2000
                                             = 2200 a a × 20 a 40(200 + 20(100 a ))2000
                                             = 2200 a a × 20 a 40 × 20040 × 20(100 a )2000
                                             = 2200 a a × 20 a 8000800(100 a )2000
                                             = 2200 a a × 20 a 10000800(100 a )
                                             = 2200 a a × 20 a 10000800 × 100 + 800 a
                                             = 2200 a a × 20 a 1000080000 + 800 a
                                             = 3000 a a × 20 a 90000
    The equation is transformed into :
     3000 a a × 20 a 90000 = 22500

    After the equation is converted into a general formula, it is converted into:
    ( a - 75 )( a - 75 )=0
    From
        a - 75 = 0
        a - 75 = 0

    it is concluded that::
        a1=75
        a2=75
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。