Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 800 = 30.02+7.928/1.1+10.375/(1.1-g)/1.1 .
    Question type: Equation
    Solution:Original question:
     800 =
1501
50
+
991
125
÷
11
10
+
83
8
÷ (
11
10
g ) ÷
11
10
     Multiply both sides of the equation by:(
11
10
g )
     800(
11
10
g ) =
1501
50
(
11
10
g ) +
991
125
÷
11
10
× (
11
10
g ) +
83
8
÷
11
10
    Remove a bracket on the left of the equation::
     800 ×
11
10
800 g =
1501
50
(
11
10
g ) +
991
125
÷
11
10
× (
11
10
g ) +
83
8
÷
11
10
    Remove a bracket on the right of the equation::
     800 ×
11
10
800 g =
1501
50
×
11
10
1501
50
g +
991
125
÷
11
10
× (
11
10
g ) +
83
8
÷
11
10
    The equation is reduced to :
     880800 g =
16511
500
1501
50
g +
1982
275
(
11
10
g ) +
415
44
    The equation is reduced to :
     880800 g =
58374
1375
1501
50
g +
1982
275
(
11
10
g )
    Remove a bracket on the right of the equation::
     880800 g =
58374
1375
1501
50
g +
1982
275
×
11
10
1982
275
g
    The equation is reduced to :
     880800 g =
58374
1375
1501
50
g +
991
125
1982
275
g
    The equation is reduced to :
     880800 g =
2771
55
819
22
g

    Transposition :
      - 800 g +
819
22
g =
2771
55
880

    Combine the items on the left of the equation:
      -
16781
22
g =
2771
55
880

    Combine the items on the right of the equation:
      -
16781
22
g = -
45629
55

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
45629
55
=
16781
22
g

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
16781
22
g =
45629
55

    The coefficient of the unknown number is reduced to 1 :
      g =
45629
55
÷
16781
22
        =
45629
55
×
22
16781
        =
45629
5
×
2
16781

    We obtained :
      g =
91258
83905
    This is the solution of the equation.

    Convert the result to decimal form :
      g = 1.087635



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。