Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 250+250(x+1)+250(x+1)(x+1) = 843.6 .
    Question type: Equation
    Solution:Original question:
     250 + 250( x + 1) + 250( x + 1)( x + 1) =
4218
5
    Remove the bracket on the left of the equation:
     Left side of the equation = 250 + 250 x + 250 × 1 + 250( x + 1)( x + 1)
                                             = 250 + 250 x + 250 + 250( x + 1)( x + 1)
                                             = 500 + 250 x + 250( x + 1)( x + 1)
                                             = 500 + 250 x + 250 x ( x + 1) + 250 × 1( x + 1)
                                             = 500 + 250 x + 250 x ( x + 1) + 250( x + 1)
                                             = 500 + 250 x + 250 x x + 250 x × 1 + 250( x + 1)
                                             = 500 + 250 x + 250 x x + 250 x + 250( x + 1)
                                             = 500 + 500 x + 250 x x + 250( x + 1)
                                             = 500 + 500 x + 250 x x + 250 x + 250 × 1
                                             = 500 + 500 x + 250 x x + 250 x + 250
                                             = 750 + 750 x + 250 x x
    The equation is transformed into :
     750 + 750 x + 250 x x =
4218
5

    After the equation is converted into a general formula, it is converted into:
    ( 25x + 78 )( 25x - 3 )=0
    From
        25x + 78 = 0
        25x - 3 = 0

    it is concluded that::
        x1=-
78
25
        x2=
3
25
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。