Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 88.15+7.07+4.09+4.76+1+(x/1.09*0.09)*1.12+x/1.09*12%+8*942.36/4609.5 = 0 .
    Question type: Equation
    Solution:Original question:
     
1763
20
+
707
100
+
409
100
+
119
25
+ 1 + ( x ÷
109
100
×
9
100
) ×
28
25
+ x ÷
109
100
×
12
100
+ 8 ×
23559
25
= 0
     Left side of the equation =
1763
20
+
707
100
+
409
100
+
119
25
+ 1 + ( x ÷
109
100
×
9
100
) ×
28
25
+ x ×
12
109
+
125648
76825
                                             =
32790603
307300
+ ( x ÷
109
100
×
9
100
) ×
28
25
+
12
109
x
    The equation is transformed into :
     
32790603
307300
+ ( x ÷
109
100
×
9
100
) ×
28
25
+
12
109
x = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
32790603
307300
+ x ÷
109
100
×
9
100
×
28
25
+
12
109
x
                                             =
32790603
307300
+ x ×
252
2725
+
12
109
x
                                             =
32790603
307300
+
552
2725
x
    The equation is transformed into :
     
32790603
307300
+
552
2725
x = 0

    Transposition :
     
552
2725
x = 0
32790603
307300

    Combine the items on the right of the equation:
     
552
2725
x = -
32790603
307300

    The coefficient of the unknown number is reduced to 1 :
      x = -
32790603
307300
÷
552
2725
        = -
32790603
307300
×
2725
552
        = -
10930201
12292
×
109
184

    We obtained :
      x = -
1191391909
2261728
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 526.761799



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。