Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-54.5)*(x-54.5+40.8) = 54.5*(x-40.8+54.5) .
    Question type: Equation
    Solution:Original question:
     ( x
109
2
)( x
109
2
+
204
5
) =
109
2
( x
204
5
+
109
2
)
    Remove the bracket on the left of the equation:
     Left side of the equation = x ( x
109
2
+
204
5
)
109
2
( x
109
2
+
204
5
)
                                             = x x x ×
109
2
+ x ×
204
5
109
2
( x
109
2
+
204
5
)
                                             = x x
137
10
x
109
2
( x
109
2
+
204
5
)
                                             = x x
137
10
x
109
2
x +
109
2
×
109
2
109
2
×
204
5
                                             = x x
137
10
x
109
2
x +
11881
4
11118
5
                                             = x x
341
5
x +
14933
20
    The equation is transformed into :
      x x
341
5
x +
14933
20
=
109
2
( x
204
5
+
109
2
)
    Remove the bracket on the right of the equation:
     Right side of the equation =
109
2
x
109
2
×
204
5
+
109
2
×
109
2
                                               =
109
2
x
11118
5
+
11881
4
                                               =
109
2
x +
14933
20
    The equation is transformed into :
      x x
341
5
x +
14933
20
=
109
2
x +
14933
20

    After the equation is converted into a general formula, it is converted into:
    ( x - 0 )( 10x - 1227 )=0
    From
        x - 0 = 0
        10x - 1227 = 0

    it is concluded that::
        x1=0
        x2=
1227
10
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。