Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1.5137 = x-120.2/(2006.9-656.3) .
    Question type: Equation
    Solution:Original question:
     
15137
10000
= x
601
5
÷ (
20069
10
6563
10
)
     Multiply both sides of the equation by:(
20069
10
6563
10
)
     
15137
10000
(
20069
10
6563
10
) = x (
20069
10
6563
10
)
601
5
    Remove a bracket on the left of the equation::
     
15137
10000
×
20069
10
15137
10000
×
6563
10
= x (
20069
10
6563
10
)
601
5
    Remove a bracket on the right of the equation::
     
15137
10000
×
20069
10
15137
10000
×
6563
10
= x ×
20069
10
x ×
6563
10
601
5
    The equation is reduced to :
     
303784453
100000
99344131
100000
= x ×
20069
10
x ×
6563
10
601
5
    The equation is reduced to :
     
102220161
50000
=
6753
5
x
601
5

    Transposition :
      -
6753
5
x = -
601
5
102220161
50000

    Combine the items on the right of the equation:
      -
6753
5
x = -
108230161
50000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
108230161
50000
=
6753
5
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
6753
5
x =
108230161
50000

    The coefficient of the unknown number is reduced to 1 :
      x =
108230161
50000
÷
6753
5
        =
108230161
50000
×
5
6753
        =
108230161
10000
×
1
6753

    We obtained :
      x =
108230161
67530000
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1.602697



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。