Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (200+200a)[150(1-10/9a)] = 20000 .
    Question type: Equation
    Solution:Original question:
     (200 + 200 a )(150(110 ÷ 9 × a )) = 20000
    Remove the bracket on the left of the equation:
     Left side of the equation = 200(150(110 ÷ 9 × a )) + 200 a (150(110 ÷ 9 × a ))
                                             = 200 × 150(110 ÷ 9 × a ) + 200 a (150(110 ÷ 9 × a ))
                                             = 30000(110 ÷ 9 × a ) + 200 a (150(110 ÷ 9 × a ))
                                             = 30000 × 130000 × 10 ÷ 9 × a + 200 a (150(110 ÷ 9 × a ))
                                             = 30000
100000
3
a + 200 a (150(110 ÷ 9 × a ))
                                             = 30000
100000
3
a + 200 a × 150(110 ÷ 9 × a )
                                             = 30000
100000
3
a + 30000 a (110 ÷ 9 × a )
                                             = 30000
100000
3
a + 30000 a × 130000 a × 10 ÷ 9 × a
                                             = 30000
100000
3
a + 30000 a
100000
3
a a
                                             = 30000
10000
3
a
100000
3
a a
    The equation is transformed into :
     30000
10000
3
a
100000
3
a a = 20000

    After the equation is converted into a general formula, it is converted into:
    ( 5a + 3 )( 2a - 1 )=0
    From
        5a + 3 = 0
        2a - 1 = 0

    it is concluded that::
        a1=-
3
5
        a2=
1
2
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。