Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x/(x+13000))/((x-21000)/(x-8000)) = 1.15 .
    Question type: Equation
    Solution:Original question:
     ( x ÷ ( x + 13000)) ÷ (( x 21000) ÷ ( x 8000)) =
23
20
     Multiply both sides of the equation by:(( x 21000) ÷ ( x 8000))
     ( x ÷ ( x + 13000)) =
23
20
(( x 21000) ÷ ( x 8000))
    Remove a bracket on the left of the equation::
      x ÷ ( x + 13000) =
23
20
(( x 21000) ÷ ( x 8000))
    Remove a bracket on the right of the equation::
      x ÷ ( x + 13000) =
23
20
( x 21000) ÷ ( x 8000)
     Multiply both sides of the equation by:( x + 13000) ,  ( x 8000)
      x ( x 8000) =
23
20
( x 21000)( x + 13000)
    Remove a bracket on the left of the equation:
      x x x × 8000 =
23
20
( x 21000)( x + 13000)
    Remove a bracket on the right of the equation::
      x x x × 8000 =
23
20
x ( x + 13000)
23
20
× 21000( x + 13000)
    The equation is reduced to :
      x x x × 8000 =
23
20
x ( x + 13000)24150( x + 13000)
    Remove a bracket on the right of the equation::
      x x 8000 x =
23
20
x x +
23
20
x × 1300024150( x + 13000)
    The equation is reduced to :
      x x 8000 x =
23
20
x x + 14950 x 24150( x + 13000)
    Remove a bracket on the right of the equation::
      x x 8000 x =
23
20
x x + 14950 x 24150 x 24150 × 13000
    The equation is reduced to :
      x x 8000 x =
23
20
x x + 14950 x 24150 x 313950000
    The equation is reduced to :
      x x 8000 x =
23
20
x x 9200 x 313950000
    This equation has no real solution!


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。