Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (365*x-1500-0.15x)*(1-0.25) = 661.5 .
    Question type: Equation
    Solution:Original question:
     (365 x 1500
3
20
x )(1
1
4
) =
1323
2
    Remove the bracket on the left of the equation:
     Left side of the equation = 365 x (1
1
4
)1500(1
1
4
)
3
20
x (1
1
4
)
                                             = 365 x × 1365 x ×
1
4
1500(1
1
4
)
3
20
x (1
1
4
)
                                             = 365 x
365
4
x 1500(1
1
4
)
3
20
x (1
1
4
)
                                             =
1095
4
x 1500(1
1
4
)
3
20
x (1
1
4
)
                                             =
1095
4
x 1500 × 1 + 1500 ×
1
4
3
20
x (1
1
4
)
                                             =
1095
4
x 1500 + 375
3
20
x (1
1
4
)
                                             =
1095
4
x 1125
3
20
x (1
1
4
)
                                             =
1095
4
x 1125
3
20
x × 1 +
3
20
x ×
1
4
                                             =
1095
4
x 1125
3
20
x +
3
80
x
                                             =
21891
80
x 1125
    The equation is transformed into :
     
21891
80
x 1125 =
1323
2

    Transposition :
     
21891
80
x =
1323
2
+ 1125

    Combine the items on the right of the equation:
     
21891
80
x =
3573
2

    The coefficient of the unknown number is reduced to 1 :
      x =
3573
2
÷
21891
80
        =
3573
2
×
80
21891
        = 1191 ×
40
7297

    We obtained :
      x =
47640
7297
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 6.52871



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。