Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation {47.45*(1+a)*500+51.40*(1+a)*134}/634 = 57.70 .
    Question type: Equation
    Solution:Original question:
     (
949
20
(1 + a ) × 500 +
257
5
(1 + a ) × 134) ÷ 634 =
577
10
    Remove the bracket on the left of the equation:
     Left side of the equation =
949
20
(1 + a ) × 500 ×
1
634
+
257
5
(1 + a ) × 134 ×
1
634
                                             =
23725
634
(1 + a ) +
17219
1585
(1 + a )
                                             =
23725
634
× 1 +
23725
634
a +
17219
1585
(1 + a )
                                             =
23725
634
+
23725
634
a +
17219
1585
(1 + a )
                                             =
23725
634
+
23725
634
a +
17219
1585
× 1 +
17219
1585
a
                                             =
23725
634
+
23725
634
a +
17219
1585
+
17219
1585
a
                                             =
153063
3170
+
153063
3170
a
    The equation is transformed into :
     
153063
3170
+
153063
3170
a =
577
10

    Transposition :
     
153063
3170
a =
577
10
153063
3170

    Combine the items on the right of the equation:
     
153063
3170
a =
14923
1585

    The coefficient of the unknown number is reduced to 1 :
      a =
14923
1585
÷
153063
3170
        =
14923
1585
×
3170
153063
        =
14923
317
×
634
153063

    We obtained :
      a =
9461182
48520971
    This is the solution of the equation.

    By reducing fraction, we can get:
      a =
29846
153063

    Convert the result to decimal form :
      a = 0.194992



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。