Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (35%×(X+X/7%)+65%×(1000+2X))/1.058 = 0 .
    Question type: Equation
    Solution:Original question:
     (
35
100
( X + X ÷
7
100
) +
65
100
(1000 + 2 X )) ÷
529
500
= 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
35
100
( X + X ÷
7
100
) ×
500
529
+
65
100
(1000 + 2 X ) ×
500
529
                                             =
175
529
( X + X ÷
7
100
) +
325
529
(1000 + 2 X )
                                             =
175
529
X +
175
529
X ÷
7
100
+
325
529
(1000 + 2 X )
                                             =
175
529
X +
2500
529
X +
325
529
(1000 + 2 X )
                                             =
2675
529
X +
325
529
(1000 + 2 X )
                                             =
2675
529
X +
325
529
× 1000 +
325
529
× 2 X
                                             =
2675
529
X +
325000
529
+
650
529
X
                                             =
3325
529
X +
325000
529
    The equation is transformed into :
     
3325
529
X +
325000
529
= 0

    Transposition :
     
3325
529
X = 0
325000
529

    Combine the items on the right of the equation:
     
3325
529
X = -
325000
529

    The coefficient of the unknown number is reduced to 1 :
      X = -
325000
529
÷
3325
529
        = -
325000
529
×
529
3325
        = - 13000 ×
1
133

    We obtained :
      X = -
13000
133
    This is the solution of the equation.

    Convert the result to decimal form :
      X = - 97.744361



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。