Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation ((x-140-40)*0.75)/1610 = ((x-140-345-30)*0.75)/1210 .
    Question type: Equation
    Solution:Original question:
     (( x 14040) ×
3
4
) ÷ 1610 = (( x 14034530) ×
3
4
) ÷ 1210
    Remove the bracket on the left of the equation:
     Left side of the equation = ( x 14040) ×
3
4
×
1
1610
                                             = ( x 14040) ×
3
6440
                                             = x ×
3
6440
140 ×
3
6440
40 ×
3
6440
                                             = x ×
3
6440
3
46
3
161
                                             =
3
6440
x
27
322
    The equation is transformed into :
     
3
6440
x
27
322
= (( x 14034530) ×
3
4
) ÷ 1210
    Remove the bracket on the right of the equation:
     Right side of the equation = ( x 14034530) ×
3
4
×
1
1210
                                               = ( x 14034530) ×
3
4840
                                               = x ×
3
4840
140 ×
3
4840
345 ×
3
4840
30 ×
3
4840
                                               = x ×
3
4840
21
242
207
968
9
484
                                               =
3
4840
x
309
968
    The equation is transformed into :
     
3
6440
x
27
322
=
3
4840
x
309
968

    Transposition :
     
3
6440
x
3
4840
x = -
309
968
+
27
322

    Combine the items on the left of the equation:
      -
3
19481
x = -
309
968
+
27
322

    Combine the items on the right of the equation:
      -
3
19481
x = -
36681
155848

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
36681
155848
=
3
19481
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
3
19481
x =
36681
155848

    The coefficient of the unknown number is reduced to 1 :
      x =
36681
155848
÷
3
19481
        =
36681
155848
×
19481
3
        =
12227
8
× 1

    We obtained :
      x =
12227
8
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1528.375



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。