Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation {47.70*(1+a)*500+50.46*(1+a)*134}/634 = 57.52 .
    Question type: Equation
    Solution:Original question:
     (
477
10
(1 + a ) × 500 +
2523
50
(1 + a ) × 134) ÷ 634 =
1438
25
    Remove the bracket on the left of the equation:
     Left side of the equation =
477
10
(1 + a ) × 500 ×
1
634
+
2523
50
(1 + a ) × 134 ×
1
634
                                             =
11925
317
(1 + a ) +
169041
15850
(1 + a )
                                             =
11925
317
× 1 +
11925
317
a +
169041
15850
(1 + a )
                                             =
11925
317
+
11925
317
a +
169041
15850
(1 + a )
                                             =
11925
317
+
11925
317
a +
169041
15850
× 1 +
169041
15850
a
                                             =
11925
317
+
11925
317
a +
169041
15850
+
169041
15850
a
                                             =
765291
15850
+
765291
15850
a
    The equation is transformed into :
     
765291
15850
+
765291
15850
a =
1438
25

    Transposition :
     
765291
15850
a =
1438
25
765291
15850

    Combine the items on the right of the equation:
     
765291
15850
a =
146401
15850

    The coefficient of the unknown number is reduced to 1 :
      a =
146401
15850
÷
765291
15850
        =
146401
15850
×
15850
765291
        =
146401
317
×
317
765291

    We obtained :
      a =
46409117
242597247
    This is the solution of the equation.

    By reducing fraction, we can get:
      a =
146401
765291

    Convert the result to decimal form :
      a = 0.191301



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。