Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x+20)/x-(x+20)/(x+45) = 1 .
    Question type: Equation
    Solution:Original question:
     ( x + 20) ÷ x ( x + 20) ÷ ( x + 45) = 1
     Multiply both sides of the equation by: x
     ( x + 20)( x + 20) ÷ ( x + 45) × x = 1 x
    Remove a bracket on the left of the equation::
      x + 20( x + 20) ÷ ( x + 45) × x = 1 x
     Multiply both sides of the equation by:( x + 45)
      x ( x + 45) + 20( x + 45)( x + 20) x = 1 x ( x + 45)
    Remove a bracket on the left of the equation:
      x x + x × 45 + 20( x + 45)( x + 20) x = 1 x ( x + 45)
    Remove a bracket on the right of the equation::
      x x + x × 45 + 20( x + 45)( x + 20) x = 1 x x + 1 x × 45
    The equation is reduced to :
      x x + x × 45 + 20( x + 45)( x + 20) x = 1 x x + 45 x
    Remove a bracket on the left of the equation:
      x x + 45 x + 20 x + 20 × 45( x + 20) x = 1 x x + 45 x
    The equation is reduced to :
      x x + 45 x + 20 x + 900( x + 20) x = 1 x x + 45 x
    The equation is reduced to :
      x x + 65 x + 900( x + 20) x = 1 x x + 45 x
    Remove a bracket on the left of the equation:
      x x + 65 x + 900 x x 20 x = 1 x x + 45 x
    The equation is reduced to :
      x x + 45 x + 900 x x = 1 x x + 45 x

    After the equation is converted into a general formula, it is converted into:
    ( x + 30 )( x - 30 )=0
    From
        x + 30 = 0
        x - 30 = 0

    it is concluded that::
        x1=-30
        x2=30
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。