Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (0.105-0.5):(0.15-0.05) = (x-50):(100-50) .
    Question type: Equation
    Solution:Original question:
     (
21
200
1
2
) ÷ (
3
20
1
20
) = ( x 50) ÷ (10050)
     Multiply both sides of the equation by:(
3
20
1
20
) ,  (10050)
     (
21
200
1
2
)(10050) = ( x 50)(
3
20
1
20
)
    Remove a bracket on the left of the equation::
     
21
200
(10050)
1
2
(10050) = ( x 50)(
3
20
1
20
)
    Remove a bracket on the right of the equation::
     
21
200
(10050)
1
2
(10050) = x (
3
20
1
20
)50(
3
20
1
20
)
    Remove a bracket on the left of the equation:
     
21
200
× 100
21
200
× 50
1
2
(10050) = x (
3
20
1
20
)50(
3
20
1
20
)
    Remove a bracket on the right of the equation::
     
21
200
× 100
21
200
× 50
1
2
(10050) = x ×
3
20
x ×
1
20
50(
3
20
1
20
)
    The equation is reduced to :
     
21
2
21
4
1
2
(10050) = x ×
3
20
x ×
1
20
50(
3
20
1
20
)
    The equation is reduced to :
     
21
4
1
2
(10050) =
1
10
x 50(
3
20
1
20
)
    Remove a bracket on the left of the equation:
     
21
4
1
2
× 100 +
1
2
× 50 =
1
10
x 50(
3
20
1
20
)
    Remove a bracket on the right of the equation::
     
21
4
1
2
× 100 +
1
2
× 50 =
1
10
x 50 ×
3
20
+ 50 ×
1
20
    The equation is reduced to :
     
21
4
50 + 25 =
1
10
x
15
2
+
5
2
    The equation is reduced to :
      -
79
4
=
1
10
x 5

    Transposition :
      -
1
10
x = - 5 +
79
4

    Combine the items on the right of the equation:
      -
1
10
x =
59
4

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      -
59
4
=
1
10
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
1
10
x = -
59
4

    The coefficient of the unknown number is reduced to 1 :
      x = -
59
4
÷
1
10
        = -
59
4
× 10
        = -
59
2
× 5

    We obtained :
      x = -
295
2
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 147.5



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。