Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (16*x/(x+2000))*1.5 = 16*x/(x+2000)+4 .
    Question type: Equation
    Solution:Original question:
     (16 x ÷ ( x + 2000)) ×
3
2
= 16 x ÷ ( x + 2000) + 4
     Multiply both sides of the equation by:( x + 2000)
     (16 x ÷ ( x + 2000)) ×
3
2
( x + 2000) = 16 x + 4( x + 2000)
    Remove a bracket on the left of the equation::
     16 x ÷ ( x + 2000) ×
3
2
( x + 2000) = 16 x + 4( x + 2000)
    Remove a bracket on the right of the equation::
     16 x ÷ ( x + 2000) ×
3
2
( x + 2000) = 16 x + 4 x + 4 × 2000
    The equation is reduced to :
     24 x ÷ ( x + 2000) × ( x + 2000) = 16 x + 4 x + 8000
    The equation is reduced to :
     24 x ÷ ( x + 2000) × ( x + 2000) = 20 x + 8000
     Multiply both sides of the equation by:( x + 2000)
     24 x ( x + 2000) = 20 x ( x + 2000) + 8000( x + 2000)
    Remove a bracket on the left of the equation:
     24 x x + 24 x × 2000 = 20 x ( x + 2000) + 8000( x + 2000)
    Remove a bracket on the right of the equation::
     24 x x + 24 x × 2000 = 20 x x + 20 x × 2000 + 8000( x + 2000)
    The equation is reduced to :
     24 x x + 48000 x = 20 x x + 40000 x + 8000( x + 2000)
    Remove a bracket on the right of the equation::
     24 x x + 48000 x = 20 x x + 40000 x + 8000 x + 8000 × 2000
    The equation is reduced to :
     24 x x + 48000 x = 20 x x + 40000 x + 8000 x + 16000000
    The equation is reduced to :
     24 x x + 48000 x = 20 x x + 48000 x + 16000000
    
    There are 0 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。