Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (-4-3d+2d)(-4-3d+4d) = 7 .
    Question type: Equation
    Solution:Original question:
     ( - 43 d + 2 d )( - 43 d + 4 d ) = 7
    Remove the bracket on the left of the equation:
     Left side of the equation = - 4( - 43 d + 4 d )3 d ( - 43 d + 4 d ) + 2 d ( - 43 d + 4 d )
                                             = 4 × 4 + 4 × 3 d 4 × 4 d 3 d ( - 43 d + 4 d ) + 2
                                             = 16 + 12 d 16 d 3 d ( - 43 d + 4 d ) + 2 d ( - 43 d + 4 d )
                                             = 164 d 3 d ( - 43 d + 4 d ) + 2 d ( - 43 d + 4 d )
                                             = 164 d + 3 d × 4 + 3 d × 3 d 3 d
                                             = 164 d + 12 d + 9 d d 12 d d + 2
                                             = 16 + 8 d + 9 d d 12 d d + 2 d ( - 43 d + 4 d )
                                             = 16 + 8 d + 9 d d 12 d d 2 d × 4
                                             = 16 + 8 d + 9 d d 12 d d 8 d 6
                                             = 16 + 0 d + 9 d d 12 d d 6 d d
    The equation is transformed into :
     16 + 0 d + 9 d d 12 d d 6 d d = 7

    After the equation is converted into a general formula, it is converted into:
    ( d + 3 )( d - 3 )=0
    From
        d + 3 = 0
        d - 3 = 0

    it is concluded that::
        d1=-3
        d2=3
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。