Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (2x-4)×(2x-4)+(x-2)×(x-2) = 5 .
    Question type: Equation
    Solution:Original question:
     (2 x 4)(2 x 4) + ( x 2)( x 2) = 5
    Remove the bracket on the left of the equation:
     Left side of the equation = 2 x (2 x 4)4(2 x 4) + ( x 2)( x 2)
                                             = 2 x × 2 x 2 x × 44(2 x 4) + ( x 2)( x 2)
                                             = 4 x x 8 x 4(2 x 4) + ( x 2)( x 2)
                                             = 4 x x 8 x 4 × 2 x + 4 × 4 + ( x 2)( x 2)
                                             = 4 x x 8 x 8 x + 16 + ( x 2)( x 2)
                                             = 4 x x 16 x + 16 + ( x 2)( x 2)
                                             = 4 x x 16 x + 16 + x ( x 2)2( x 2)
                                             = 4 x x 16 x + 16 + x x x × 22( x 2)
                                             = 4 x x 18 x + 16 + x x 2( x 2)
                                             = 4 x x 18 x + 16 + x x 2 x + 2 × 2
                                             = 4 x x 18 x + 16 + x x 2 x + 4
                                             = 4 x x 20 x + 20 + x x
    The equation is transformed into :
     4 x x 20 x + 20 + x x = 5

    After the equation is converted into a general formula, it is converted into:
    ( x - 1 )( x - 3 )=0
    From
        x - 1 = 0
        x - 3 = 0

    it is concluded that::
        x1=1
        x2=3
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。