Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1500(1+x)×500+600(1+5x)×1600-2000×500-1600×800 = -348000 .
    Question type: Equation
    Solution:Original question:
     1500(1 + x ) × 500 + 600(1 + 5 x ) × 16002000 × 5001600 × 800 = - 348000
     Left side of the equation = 750000(1 + x ) + 960000(1 + 5 x )10000001280000
                                             = 750000(1 + x ) + 960000(1 + 5 x )2280000
    The equation is transformed into :
     750000(1 + x ) + 960000(1 + 5 x )2280000 = - 348000
    Remove the bracket on the left of the equation:
     Left side of the equation = 750000 × 1 + 750000 x + 960000(1 + 5 x )2280000
                                             = 750000 + 750000 x + 960000(1 + 5 x )2280000
                                             = - 1530000 + 750000 x + 960000(1 + 5 x )
                                             = - 1530000 + 750000 x + 960000 × 1 + 960000 × 5 x
                                             = - 1530000 + 750000 x + 960000 + 4800000 x
                                             = - 570000 + 5550000 x
    The equation is transformed into :
      - 570000 + 5550000 x = - 348000

    Transposition :
     5550000 x = - 348000 + 570000

    Combine the items on the right of the equation:
     5550000 x = 222000

    The coefficient of the unknown number is reduced to 1 :
      x = 222000 ÷ 5550000
        = 222000 ×
1
5550000
        = 1 ×
1
25

    We obtained :
      x =
1
25
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.04



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。