Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 90x(1-30%)+100(2x-1)(1-15%) = (90x+100x)(1-20%) .
    Question type: Equation
    Solution:Original question:
     90 x (1
30
100
) + 100(2 x 1)(1
15
100
) = (90 x + 100 x )(1
20
100
)
    Remove the bracket on the left of the equation:
     Left side of the equation = 90 x × 190 x ×
30
100
+ 100(2 x 1)(1
15
100
)
                                             = 90 x 27 x + 100(2 x 1)(1
15
100
)
                                             = 63 x + 100(2 x 1)(1
15
100
)
                                             = 63 x + 100 × 2 x (1
15
100
)100 × 1(1
15
100
)
                                             = 63 x + 200 x (1
15
100
)100(1
15
100
)
                                             = 63 x + 200 x × 1200 x ×
15
100
100(1
15
100
)
                                             = 63 x + 200 x 30 x 100(1
15
100
)
                                             = 233 x 100(1
15
100
)
                                             = 233 x 100 × 1 + 100 ×
15
100
                                             = 233 x 100 + 15
                                             = 233 x 85
    The equation is transformed into :
     233 x 85 = (90 x + 100 x )(1
20
100
)
    Remove the bracket on the right of the equation:
     Right side of the equation = 90 x (1
20
100
) + 100 x (1
20
100
)
                                               = 90 x × 190 x ×
20
100
+ 100 x (1
20
100
)
                                               = 90 x 18 x + 100 x (1
20
100
)
                                               = 72 x + 100 x (1
20
100
)
                                               = 72 x + 100 x × 1100 x ×
20
100
                                               = 72 x + 100 x 20 x
                                               = 152 x
    The equation is transformed into :
     233 x 85 = 152 x

    Transposition :
     233 x 152 x = 85

    Combine the items on the left of the equation:
     81 x = 85

    The coefficient of the unknown number is reduced to 1 :
      x = 85 ÷ 81
        = 85 ×
1
81

    We obtained :
      x =
85
81
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1.049383



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。