| ( | ( | ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ) | ÷ | ( | k | × | 2 | + | 1 | ) | × | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ) | + | 28 | ÷ | ( | 3 | − | k | × | 2 | ) | = | 1440 |
| Multiply both sides of the equation by: | ( | 3 | − | k | × | 2 | ) |
| ( | ( | ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ) | ÷ | ( | k | × | 2 | + | 1 | ) | × | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 1440 | ( | 3 | − | k | × | 2 | ) |
| ( | ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ) | ÷ | ( | k | × | 2 | + | 1 | ) | × | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 1440 | ( | 3 | − | k | × | 2 | ) |
| ( | ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ) | ÷ | ( | k | × | 2 | + | 1 | ) | × | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 1440 | × | 3 | − | 1440 | k | × | 2 |
| ( | ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ) | ÷ | ( | k | × | 2 | + | 1 | ) | × | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 4320 | − | 2880 | k |
| Multiply both sides of the equation by: | ( | k | × | 2 | + | 1 | ) |
| ( | ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | ( | k | × | 2 | + | 1 | ) | = | 4320 | ( | k | × | 2 | + | 1 | ) | − | 2880 | k | ( | k | × | 2 | + | 1 | ) |
| ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | ( | k | × | 2 | + | 1 | ) | = | 4320 | ( | k | × | 2 | + | 1 | ) | − | 2880 | k | ( | k | × | 2 | + | 1 | ) |
| ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | ( | k | × | 2 | + | 1 | ) | = | 4320 | k | × | 2 | + | 4320 | × | 1 | − | 2880 | k | ( | k | × | 2 | + | 1 | ) |
| ( | 2 | k | + | 2 | ) | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | ( | k | × | 2 | + | 1 | ) | = | 8640 | k | + | 4320 | − | 2880 | k | ( | k | × | 2 | + | 1 | ) |
| 2 | k | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 2 | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 8640 | k | + | 4320 | − | 2880 | k | ( | k | × | 2 | + | 1 | ) |
| 2 | k | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 2 | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 8640 | k | + | 4320 | − | 2880 | k | k | × | 2 | − | 2880 | k | × | 1 |
| 2 | k | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 2 | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 8640 | k | + | 4320 | − | 5760 | k | k | − | 2880 | k |
| 2 | k | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 2 | ( | 2 | k | + | 2 | ) | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 28 | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 2 | k | × | 2 | k | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 2 | k | × | 2 | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 2 | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | ( | ( | 1 | + | k | ) | ( | 1 | + | k | ) | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | × | 1 | ( | 1 | + | k | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | k | k | ( | 1 | + | k | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | ( | 1 | + | k | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | k | k | ( | 1 | + | k | ) | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | × | 1 | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | k | k | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | k | k | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | + | 4 | k | k | k | ( | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ) | ( | 3 | − | k | × | 2 | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
| 4 | k | k | × | 4 | k | ÷ | 3 | × | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | − | 4 | k | k | k | = | 5760 | k | + | 4320 | − | 5760 | k | k |
16 3 | k | k | k | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | − | 8 | k | k | k | ( | 4 | k | ÷ | 3 | − | k | × | 2 | ) | ( | 3 | − | k | × | 2 | ) | = | 5760 | k | + | 4320 | − | 5760 | k | k |
16 3 | k | k | k | × | 4 | k | ÷ | 3 | × | ( | 3 | − | k | × | 2 | ) | − | 16 3 | k | k | k | = | 5760 | k | + | 4320 | − | 5760 | k | k |