Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 118320*(m-1)*(1+2+3+m)/780000*m = 0 .
    Question type: Equation
    Solution:Original question:
     118320( m 1)(1 + 2 + 3 + m ) ÷ 780000 × m = 0
     Left side of the equation =
493
3250
( m 1)(1 + 2 + 3 + m ) m
    The equation is transformed into :
     
493
3250
( m 1)(1 + 2 + 3 + m ) m = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
493
3250
m (1 + 2 + 3 + m ) m
493
3250
× 1(1 + 2 + 3 + m ) m
                                             =
493
3250
m (1 + 2 + 3 + m ) m
493
3250
(1 + 2 + 3 + m ) m
                                             =
493
3250
m × 1 m +
493
3250
m × 2 m +
493
3250
m × 3 m
                                             =
493
3250
m m +
493
1625
m m +
1479
3250
m m +
493
3250
m m
                                             =
493
3250
m m +
493
1625
m m +
1479
3250
m m +
493
3250
m m
                                             =
493
3250
m m +
493
1625
m m +
1479
3250
m m +
493
3250
m m
                                             =
493
3250
m m +
493
1625
m m +
1479
3250
m m +
493
3250
m m
    The equation is transformed into :
     
493
3250
m m +
493
1625
m m +
1479
3250
m m +
493
3250
m m = 0

    After the equation is converted into a general formula, it is converted into:
    ( m + 6 )( m - 0 )( m - 1 )=0
    From
        m + 6 = 0
        m - 0 = 0
        m - 1 = 0

    it is concluded that::
        m1=-6
        m2=0
        m3=1
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。