| ( | x | − | 8 | ) | ÷ | ( | x | − | 10 | ) | + | ( | 2 | x | − | 8 | ) | ÷ | ( | x | − | 6 | ) | = | ( | x | − | 5 | ) | ÷ | ( | x | − | 7 | ) | + | ( | 2 | x | − | 14 | ) | ÷ | ( | x | − | 9 | ) |
| Multiply both sides of the equation by: | ( | x | − | 10 | ) | , | ( | x | − | 7 | ) |
| ( | x | − | 8 | ) | ( | x | − | 7 | ) | + | ( | 2 | x | − | 8 | ) | ÷ | ( | x | − | 6 | ) | × | ( | x | − | 10 | ) | ( | x | − | 7 | ) | = | ( | x | − | 5 | ) | ( | x | − | 10 | ) | + | ( | 2 | x | − | 14 | ) | ÷ | ( | x | − | 9 | ) | × | ( | x | − | 10 | ) | ( | x | − | 7 | ) |
| x | ( | x | − | 7 | ) | − | 8 | ( | x | − | 7 | ) | + | ( | 2 | x | − | 8 | ) | ÷ | ( | x | − | 6 | ) | × | ( | x | − | 10 | ) | ( | x | − | 7 | ) | = | ( | x | − | 5 | ) | ( | x | − | 10 | ) | + | ( | 2 | x | − | 14 | ) | ÷ | ( | x | − | 9 | ) | × | ( | x | − | 10 | ) | ( | x | − | 7 | ) |
| x | ( | x | − | 7 | ) | − | 8 | ( | x | − | 7 | ) | + | ( | 2 | x | − | 8 | ) | ÷ | ( | x | − | 6 | ) | × | ( | x | − | 10 | ) | ( | x | − | 7 | ) | = | x | ( | x | − | 10 | ) | − | 5 | ( | x | − | 10 | ) | + | ( | 2 | x | − | 14 | ) | ÷ | ( | x | − | 9 | ) | × | ( | x | − | 10 | ) | ( | x | − | 7 | ) |
| Multiply both sides of the equation by: | ( | x | − | 6 | ) | , | ( | x | − | 9 | ) |
| x | ( | x | − | 7 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 8 | ( | x | − | 7 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | + | ( | 2 | x | − | 8 | ) | ( | x | − | 10 | ) | ( | x | − | 7 | ) | ( | x | − | 9 | ) | = | x | ( | x | − | 10 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 5 | ( | x | − | 10 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | + | ( | 2 | x | − | 14 | ) | ( | x | − | 10 | ) | ( | x | − | 7 | ) | ( | x | − | 6 | ) |
| x | x | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | x | × | 7 | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 8 | ( | x | − | 7 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | = | x | ( | x | − | 10 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 5 | ( | x | − | 10 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | + | ( | 2 | x | − | 14 | ) | ( | x | − | 10 | ) | ( | x | − | 7 | ) | ( | x | − | 6 | ) |
| x | x | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | x | × | 7 | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 8 | ( | x | − | 7 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) | = | x | x | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | x | × | 10 | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 5 | ( | x | − | 10 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) |
| x | x | x | ( | x | − | 9 | ) | − | x | x | × | 6 | ( | x | − | 9 | ) | − | x | × | 7 | ( | x | − | 6 | ) | ( | x | − | 9 | ) | = | x | x | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | x | × | 10 | ( | x | − | 6 | ) | ( | x | − | 9 | ) | − | 5 | ( | x | − | 10 | ) | ( | x | − | 6 | ) | ( | x | − | 9 | ) |
| x | x | x | ( | x | − | 9 | ) | − | x | x | × | 6 | ( | x | − | 9 | ) | − | x | × | 7 | ( | x | − | 6 | ) | ( | x | − | 9 | ) | = | x | x | x | ( | x | − | 9 | ) | − | x | x | × | 6 | ( | x | − | 9 | ) | − | x | × | 10 | ( | x | − | 6 | ) | ( | x | − | 9 | ) |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | ( | x | − | 9 | ) | = | x | x | x | ( | x | − | 9 | ) | − | x | x | × | 6 | ( | x | − | 9 | ) | − | x | × | 10 | ( | x | − | 6 | ) | ( | x | − | 9 | ) |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | ( | x | − | 9 | ) | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | ( | x | − | 9 | ) |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | ( | x | − | 9 | ) |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |
| x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x | = | x | x | x | x | − | x | x | x | × | 9 | − | x | x | × | 6 | x |