Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [(1+30%)X+(1+20%)×(250-X)]×90% = 250+33.5 .
    Question type: Equation
    Solution:Original question:
     ((1 +
30
100
) X + (1 +
20
100
)(250 X )) ×
90
100
= 250 +
67
2
    Remove the bracket on the left of the equation:
     Left side of the equation = (1 +
30
100
) X ×
90
100
+ (1 +
20
100
)(250 X ) ×
90
100
                                             = 1 X ×
90
100
+
30
100
X ×
90
100
+ (1 +
20
100
)(250 X ) ×
90
100
                                             =
9
10
X +
27
100
X + (1 +
20
100
)(250 X ) ×
90
100
                                             =
117
100
X + (1 +
20
100
)(250 X ) ×
90
100
                                             =
117
100
X + 1(250 X ) ×
90
100
+
20
100
(250 X ) ×
90
100
                                             =
117
100
X +
9
10
(250 X ) +
9
50
(250 X )
                                             =
117
100
X +
9
10
× 250
9
10
X +
9
50
(250 X )
                                             =
117
100
X + 225
9
10
X +
9
50
(250 X )
                                             =
27
100
X + 225 +
9
50
(250 X )
                                             =
27
100
X + 225 +
9
50
× 250
9
50
X
                                             =
27
100
X + 225 + 45
9
50
X
                                             =
9
100
X + 270
    The equation is transformed into :
     
9
100
X + 270 = 250 +
67
2
     Right side of the equation =
567
2
    The equation is transformed into :
     
9
100
X + 270 =
567
2

    Transposition :
     
9
100
X =
567
2
270

    Combine the items on the right of the equation:
     
9
100
X =
27
2

    The coefficient of the unknown number is reduced to 1 :
      X =
27
2
÷
9
100
        =
27
2
×
100
9
        = 3 × 50

    We obtained :
      X = 150
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。