Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.55×180+0.6×(y-180)+180×0.55+0.6×(400-180)+0.85(800-y-400) = 482 .
    Question type: Equation
    Solution:Original question:
     
11
20
× 180 +
3
5
( y 180) + 180 ×
11
20
+
3
5
(400180) +
17
20
(800 y 400) = 482
     Left side of the equation = 99 +
3
5
( y 180) + 99 +
3
5
(400180) +
17
20
(800 y 400)
                                             = 198 +
3
5
( y 180) +
3
5
(400180) +
17
20
(800 y 400)
    The equation is transformed into :
     198 +
3
5
( y 180) +
3
5
(400180) +
17
20
(800 y 400) = 482
    Remove the bracket on the left of the equation:
     Left side of the equation = 198 +
3
5
y
3
5
× 180 +
3
5
(400180) +
17
20
(800 y 400)
                                             = 198 +
3
5
y 108 +
3
5
(400180) +
17
20
(800 y 400)
                                             = 90 +
3
5
y +
3
5
(400180) +
17
20
(800 y 400)
                                             = 90 +
3
5
y +
3
5
× 400
3
5
× 180 +
17
20
(800 y 400)
                                             = 90 +
3
5
y + 240108 +
17
20
(800 y 400)
                                             = 222 +
3
5
y +
17
20
(800 y 400)
                                             = 222 +
3
5
y +
17
20
× 800
17
20
y
17
20
× 400
                                             = 222 +
3
5
y + 680
17
20
y 340
                                             = 562
1
4
y
    The equation is transformed into :
     562
1
4
y = 482

    Transposition :
      -
1
4
y = 482562

    Combine the items on the right of the equation:
      -
1
4
y = - 80

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     80 =
1
4
y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
1
4
y = 80

    The coefficient of the unknown number is reduced to 1 :
      y = 80 ÷
1
4
        = 80 × 4

    We obtained :
      y = 320
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。