Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.907*(-26460)-7.81*2.8+(8400+x)*2.3469 = 0 .
    Question type: Equation
    Solution:Original question:
     
907
1000
( - 26460)
781
100
×
14
5
+ (8400 + x ) ×
23469
10000
= 0
     Left side of the equation =
907
1000
( - 26460)
5467
250
+ (8400 + x ) ×
23469
10000
    The equation is transformed into :
     
907
1000
( - 26460)
5467
250
+ (8400 + x ) ×
23469
10000
= 0
    Remove the bracket on the left of the equation:
     Left side of the equation = -
907
1000
× 26460
5467
250
+ (8400 + x ) ×
23469
10000
                                             = -
1199961
50
5467
250
+ (8400 + x ) ×
23469
10000
                                             = -
3002636
125
+ (8400 + x ) ×
23469
10000
                                             = -
3002636
125
+ 8400 ×
23469
10000
+ x ×
23469
10000
                                             = -
3002636
125
+
492849
25
+ x ×
23469
10000
                                             = -
538391
125
+
23469
10000
x
    The equation is transformed into :
      -
538391
125
+
23469
10000
x = 0

    Transposition :
     
23469
10000
x = 0 +
538391
125

    Combine the items on the right of the equation:
     
23469
10000
x =
538391
125

    The coefficient of the unknown number is reduced to 1 :
      x =
538391
125
÷
23469
10000
        =
538391
125
×
10000
23469
        = 538391 ×
80
23469

    We obtained :
      x =
43071280
23469
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1835.241382



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。