Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x/4000)*(1/20)+((70000-x)/2000)*(1/30) = 1 .
    Question type: Equation
    Solution:Original question:
     ( x ÷ 4000)(1 ÷ 20) + ((70000 x ) ÷ 2000)(1 ÷ 30) = 1
    Remove the bracket on the left of the equation:
     Left side of the equation = x ÷ 4000 × (1 ÷ 20) + ((70000 x ) ÷ 2000)(1 ÷ 30)
                                             = x ×
1
4000
× 1 ÷ 20 + ((70000 x ) ÷ 2000)(1 ÷ 30)
                                             = x ×
1
80000
+ ((70000 x ) ÷ 2000)(1 ÷ 30)
                                             =
1
80000
x + (70000 x ) ÷ 2000 × (1 ÷ 30)
                                             =
1
80000
x + 70000 ×
1
2000
(1 ÷ 30) x ×
1
2000
(1 ÷ 30)
                                             =
1
80000
x + 35(1 ÷ 30) x ×
1
2000
(1 ÷ 30)
                                             =
1
80000
x + 35 × 1 ÷ 30 x ×
1
2000
(1 ÷ 30)
                                             =
1
80000
x +
7
6
x ×
1
2000
(1 ÷ 30)
                                             =
1
80000
x +
7
6
x ×
1
2000
× 1 ÷ 30
                                             =
1
80000
x +
7
6
x ×
1
60000
                                             = -
1
240000
x +
7
6
    The equation is transformed into :
      -
1
240000
x +
7
6
= 1

    Transposition :
      -
1
240000
x = 1
7
6

    Combine the items on the right of the equation:
      -
1
240000
x = -
1
6

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
1
6
=
1
240000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
1
240000
x =
1
6

    The coefficient of the unknown number is reduced to 1 :
      x =
1
6
÷
1
240000
        =
1
6
× 240000
        = 1 × 40000

    We obtained :
      x = 40000
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。