Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (5.65*0.3986)/(5.65-1.525612)+(2.41*0.5941)/(2.41-1.525612)+(1*0.0073)/(1-1.525612) = Rmin+1 .
    Question type: Equation
    Solution:Original question:
     (
113
20
×
1993
5000
) ÷ (
113
20
381403
250000
) + (
241
100
×
5941
10000
) ÷ (
241
100
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) = R + 1
     Multiply both sides of the equation by:(
113
20
381403
250000
)
     (
113
20
×
1993
5000
) + (
241
100
×
5941
10000
) ÷ (
241
100
381403
250000
) × (
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
) = R (
113
20
381403
250000
) + 1(
113
20
381403
250000
)
    Remove a bracket on the left of the equation::
     
113
20
×
1993
5000
+ (
241
100
×
5941
10000
) ÷ (
241
100
381403
250000
) × (
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
) = R (
113
20
381403
250000
) + 1(
113
20
381403
250000
)
    Remove a bracket on the right of the equation::
     
113
20
×
1993
5000
+ (
241
100
×
5941
10000
) ÷ (
241
100
381403
250000
) × (
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
) = R ×
113
20
R ×
381403
250000
+ 1(
113
20
381403
250000
)
    The equation is reduced to :
     
225209
100000
+ (
241
100
×
5941
10000
) ÷ (
241
100
381403
250000
) × (
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
) = R ×
113
20
R ×
381403
250000
+ 1(
113
20
381403
250000
)
    The equation is reduced to :
     
225209
100000
+ (
241
100
×
5941
10000
) ÷ (
241
100
381403
250000
) × (
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
) =
1031097
250000
R + 1(
113
20
381403
250000
)
     Multiply both sides of the equation by:(
241
100
381403
250000
)
     
225209
100000
(
241
100
381403
250000
) + (
241
100
×
5941
10000
)(
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
)(
241
100
381403
250000
) =
1031097
250000
R (
241
100
381403
250000
) + 1(
113
20
381403
250000
)(
241
100
381403
250000
)
    Remove a bracket on the left of the equation:
     
225209
100000
×
241
100
225209
100000
×
381403
250000
+ (
241
100
×
5941
10000
)(
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
)(
241
100
381403
250000
) =
1031097
250000
R (
241
100
381403
250000
) + 1(
113
20
381403
250000
)(
241
100
381403
250000
)
    Remove a bracket on the right of the equation::
     
225209
100000
×
241
100
225209
100000
×
381403
250000
+ (
241
100
×
5941
10000
)(
113
20
381403
250000
) + (1 ×
73
10000
) ÷ (1
381403
250000
) × (
113
20
381403
250000
)(
241
100
381403
250000
) =
1031097
250000
R ×
241
100
1031097
250000
R ×
381403
250000
+ 1(
113
20
381403
250000
)(
241
100
381403
250000
)

    
        Rmin≈1.151105 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。