Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 2000000-(184954.13-x/1.09*0.09*1.12-23303.99)-9174.31 = x .
    Question type: Equation
    Solution:Original question:
     2000000(
18495413
100
x ÷
109
100
×
9
100
×
28
25
2330399
100
)
917431
100
= x
     Left side of the equation =
199082569
100
(
18495413
100
x ÷
109
100
×
9
100
×
28
25
2330399
100
)
    The equation is transformed into :
     
199082569
100
(
18495413
100
x ÷
109
100
×
9
100
×
28
25
2330399
100
) = x
    Remove the bracket on the left of the equation:
     Left side of the equation =
199082569
100
18495413
100
+ x ÷
109
100
×
9
100
×
28
25
+
2330399
100
                                             =
199082569
100
18495413
100
+ x ×
252
2725
+
2330399
100
                                             =
36583511
20
+
252
2725
x
    The equation is transformed into :
     
36583511
20
+
252
2725
x = x

    Transposition :
     
252
2725
x x = -
36583511
20

    Combine the items on the left of the equation:
     
2473
2725
x = -
36583511
20

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
36583511
20
=
2473
2725
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
2473
2725
x =
36583511
20

    The coefficient of the unknown number is reduced to 1 :
      x =
36583511
20
÷
2473
2725
        =
36583511
20
×
2725
2473
        =
36583511
4
×
545
2473

    We obtained :
      x =
19938013495
9892
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。