Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 150×[30×(1+m%)-20]+150×[35×(1-m%)-(25-2)] = 2500+270 .
    Question type: Equation
    Solution:Original question:
     150(30(1 + m )20) + 150(35(1 m )(252)) = 2500 + 270
    Remove the bracket on the left of the equation:
     Left side of the equation = 150 × 30(1 + m )150 × 20 + 150(35(1 m )(252))
                                             = 4500(1 + m )3000 + 150(35(1 m )(252))
                                             = 4500 × 1 + 4500 m 3000 + 150(35(1 m )(252))
                                             = 4500 + 4500 m 3000 + 150(35(1 m )(252))
                                             = 1500 + 4500 m + 150(35(1 m )(252))
                                             = 1500 + 4500 m + 150 × 35(1 m )150(252)
                                             = 1500 + 4500 m + 5250(1 m )150(252)
                                             = 1500 + 4500 m + 5250 × 15250 m 150(252)
                                             = 1500 + 4500 m + 52505250 m 150(252)
                                             = 6750750 m 150(252)
                                             = 6750750 m 150 × 25 + 150 × 2
                                             = 6750750 m 3750 + 300
                                             = 3300750 m
    The equation is transformed into :
     3300750 m = 2500 + 270
     Right side of the equation = 2770
    The equation is transformed into :
     3300750 m = 2770

    Transposition :
      - 750 m = 27703300

    Combine the items on the right of the equation:
      - 750 m = - 530

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     530 = 750 m

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     750 m = 530

    The coefficient of the unknown number is reduced to 1 :
      m = 530 ÷ 750
        = 530 ×
1
750
        = 53 ×
1
75

    We obtained :
      m =
53
75
    This is the solution of the equation.

    Convert the result to decimal form :
      m = 0.706667



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。