Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 20×1000(1-3/8a%)+30(1-a%)×(1500-1000)(1+2a%) = 20×1000+30×(1500-1000) .
    Question type: Equation
    Solution:Original question:
     20 × 1000(13 ÷ 8 × a ) + 30(1 a )(15001000)(1 + 2 a ) = 20 × 1000 + 30(15001000)
     Left side of the equation = 20000(13 ÷ 8 × a ) + 30(1 a )(15001000)(1 + 2 a )
    The equation is transformed into :
     20000(13 ÷ 8 × a ) + 30(1 a )(15001000)(1 + 2 a ) = 20 × 1000 + 30(15001000)
    Remove the bracket on the left of the equation:
     Left side of the equation = 20000 × 120000 × 3 ÷ 8 × a + 30(1 a )(15001000)(1 + 2 a )
                                             = 200007500 a + 30(1 a )(15001000)(1 + 2 a )
                                             = 200007500 a + 30 × 1(15001000)(1 + 2 a )30 a (15001000)(1 + 2 a )
                                             = 200007500 a + 30(15001000)(1 + 2 a )30 a (15001000)(1 + 2 a )
                                             = 200007500 a + 30 × 1500(1 + 2 a )30 × 1000(1 + 2 a )30 a (15001000)
                                             = 200007500 a + 45000(1 + 2 a )30000(1 + 2 a )30 a (15001000)(1 + 2 a )
                                             = 200007500 a + 45000 × 1 + 45000 × 2 a 30000(1 + 2 a )30 a
                                             = 200007500 a + 45000 + 90000 a 30000(1 + 2 a )30 a (15001000)(1 + 2 a )
                                             = 65000 + 82500 a 30000(1 + 2 a )30 a (15001000)(1 + 2 a )
                                             = 65000 + 82500 a 30000 × 130000 × 2 a 30 a (15001000)(1 + 2 a )
                                             = 65000 + 82500 a 3000060000 a 30 a (15001000)(1 + 2 a )
                                             = 35000 + 22500 a 30 a (15001000)(1 + 2 a )
                                             = 35000 + 22500 a 30 a × 1500(1 + 2 a ) + 30 a × 1000(1 + 2 a )
                                             = 35000 + 22500 a 45000 a (1 + 2 a ) + 30000 a (1 + 2 a )
                                             = 35000 + 22500 a 45000 a × 145000 a × 2 a + 30000 a
                                             = 35000 + 22500 a 45000 a 90000 a a + 30000 a (1 + 2 a )
                                             = 3500022500 a 90000 a a + 30000 a (1 + 2 a )
                                             = 3500022500 a 90000 a a + 30000 a × 1 + 30000 a × 2
                                             = 3500022500 a 90000 a a + 30000 a + 60000 a a
                                             = 35000 + 7500 a 90000 a a + 60000 a a
    The equation is transformed into :
     35000 + 7500 a 90000 a a + 60000 a a = 20 × 1000 + 30(15001000)
     Right side of the equation = 20000 + 30(15001000)
    The equation is transformed into :
     35000 + 7500 a 90000 a a + 60000 a a = 20000 + 30(15001000)

    After the equation is converted into a general formula, it is converted into:
    ( a +0 )( a - 25 )=0
    From
        a + 0 = 0
        a - 25 = 0

    it is concluded that::
        a1=0
        a2=25
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。