Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1/2)n+(n(n-1))/2*(-1/6) = -5 .
    Question type: Equation
    Solution:Original question:
     (1 ÷ 2) n + ( n ( n 1)) ÷ 2 × ( - 1 ÷ 6) = - 5
    Remove the bracket on the left of the equation:
     Left side of the equation = 1 ÷ 2 × n + ( n ( n 1)) ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n + ( n ( n 1)) ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n + n ( n 1) ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n + n n ×
1
2
( - 1 ÷ 6) n × 1 ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n + n n ×
1
2
( - 1 ÷ 6) n ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n n n ×
1
2
× 1 ÷ 6 n ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n n n ×
1
12
n ×
1
2
( - 1 ÷ 6)
                                             =
1
2
n n n ×
1
12
+ n ×
1
2
× 1 ÷ 6
                                             =
1
2
n n n ×
1
12
+ n ×
1
12
                                             =
7
12
n n n ×
1
12
    The equation is transformed into :
     
7
12
n n n ×
1
12
= - 5

    After the equation is converted into a general formula, it is converted into:
    ( n + 5 )( n - 12 )=0
    From
        n + 5 = 0
        n - 12 = 0

    it is concluded that::
        n1=-5
        n2=12
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。