Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 5720*x+183240 = (-183240/0.282)*(x/500+x/550+x/300-0.24) .
    Question type: Equation
    Solution:Original question:
     5720 x + 183240 = ( - 183240 ÷
141
500
)( x ÷ 500 + x ÷ 550 + x ÷ 300
6
25
)
    Remove the bracket on the right of the equation:
     Right side of the equation = - 183240 ÷
141
500
× ( x ÷ 500 + x ÷ 550 + x ÷ 300
6
25
)
                                               = -
30540000
47
( x ÷ 500 + x ÷ 550 + x ÷ 300
6
25
)
                                               = -
30540000
47
x ÷ 500
30540000
47
x ÷ 550
30540000
47
x ÷ 300 +
30540000
47
×
6
25
                                               = -
61080
47
x
610800
517
x
101800
47
x +
7329600
47
                                               = -
2402480
517
x +
7329600
47
    The equation is transformed into :
     5720 x + 183240 = -
2402480
517
x +
7329600
47

    Transposition :
     5720 x +
2402480
517
x =
7329600
47
183240

    Combine the items on the left of the equation:
     
5359720
517
x =
7329600
47
183240

    Combine the items on the right of the equation:
     
5359720
517
x = -
1282680
47

    The coefficient of the unknown number is reduced to 1 :
      x = -
1282680
47
÷
5359720
517
        = -
1282680
47
×
517
5359720
        = - 32067 ×
11
133993

    We obtained :
      x = -
352737
133993
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 2.632503



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。