Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 2.4×400×10×(1+a%)+2.4×(1+a%)×500×10×(1+20a%) = 21600×(1+20/9a%) .
    Question type: Equation
    Solution:Original question:
     
12
5
× 400 × 10(1 + a ) +
12
5
(1 + a ) × 500 × 10(1 + 20 a ) = 21600(1 + 20 ÷ 9 × a )
     Left side of the equation = 9600(1 + a ) + 12000(1 + a )(1 + 20 a )
    The equation is transformed into :
     9600(1 + a ) + 12000(1 + a )(1 + 20 a ) = 21600(1 + 20 ÷ 9 × a )
    Remove the bracket on the left of the equation:
     Left side of the equation = 9600 × 1 + 9600 a + 12000(1 + a )(1 + 20 a )
                                             = 9600 + 9600 a + 12000(1 + a )(1 + 20 a )
                                             = 9600 + 9600 a + 12000 × 1(1 + 20 a ) + 12000 a (1 + 20 a )
                                             = 9600 + 9600 a + 12000(1 + 20 a ) + 12000 a (1 + 20 a )
                                             = 9600 + 9600 a + 12000 × 1 + 12000 × 20 a + 12000 a (1 + 20 a )
                                             = 9600 + 9600 a + 12000 + 240000 a + 12000 a (1 + 20 a )
                                             = 21600 + 249600 a + 12000 a (1 + 20 a )
                                             = 21600 + 249600 a + 12000 a × 1 + 12000 a × 20 a
                                             = 21600 + 249600 a + 12000 a + 240000 a a
                                             = 21600 + 261600 a + 240000 a a
    The equation is transformed into :
     21600 + 261600 a + 240000 a a = 21600(1 + 20 ÷ 9 × a )
    Remove the bracket on the right of the equation:
     Right side of the equation = 21600 × 1 + 21600 × 20 ÷ 9 × a
                                               = 21600 + 48000 a
    The equation is transformed into :
     21600 + 261600 a + 240000 a a = 21600 + 48000 a

    After the equation is converted into a general formula, it is converted into:
    ( a + 89 )( a +0 )=0
    From
        a + 89 = 0
        a + 0 = 0

    it is concluded that::
        a1=-89, it is the incremental root of the eqution.
        a2=0
    
    There are 2 solution(s).

    There is(are) 1 additive root(s) and 1 real solutions.
(Note:additive root, generated by computer, but not suitable for this equation.)


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。