Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 30×[(1+0.0435)1-1]+(600+80+220+21.5+19.03+0.01K8)[(1+0.0435)0.5-1] = 0 .
    Question type: Equation
    Solution:Original question:
     30((1 +
87
2000
) × 11) + (600 + 80 + 220 +
43
2
+
1903
100
+
1
100
K × 8)((1 +
87
2000
) ×
1
2
1) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 30(1 +
87
2000
) × 130 × 1 + (600 + 80 + 220 +
43
2
+
1903
100
+
1
100
K × 8)((1 +
87
2000
) ×
1
2
1)
                                             = 30(1 +
87
2000
)30 + (600 + 80 + 220 +
43
2
+
1903
100
+
1
100
K × 8)((1 +
87
2000
) ×
1
2
1)
                                             = 30 × 1 + 30 ×
87
2000
30 + (600 + 80 + 220 +
43
2
+
1903
100
+
1
100
K × 8)((1 +
87
2000
) ×
1
2
1)
                                             = 30 +
261
200
30 + (600 + 80 + 220 +
43
2
+
1903
100
+
1
100
K × 8)((1 +
87
2000
) ×
1
2
1)
                                             =
261
200
+ (600 + 80 + 220 +
43
2
+
1903
100
+
1
100
K × 8)((1 +
87
2000
) ×
1
2
1)
                                             =
261
200
+ 600((1 +
87
2000
) ×
1
2
1) + 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
1
100
                                             =
261
200
+ 600((1 +
87
2000
) ×
1
2
1) + 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
                                             =
261
200
+ 600(1 +
87
2000
) ×
1
2
600 × 1 + 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1)
                                             =
261
200
+ 300(1 +
87
2000
)600 + 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1)
                                             = -
119739
200
+ 300(1 +
87
2000
) + 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
                                             = -
119739
200
+ 300 × 1 + 300 ×
87
2000
+ 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
                                             = -
119739
200
+ 300 +
261
20
+ 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
                                             = -
57129
200
+ 80((1 +
87
2000
) ×
1
2
1) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
57129
200
+ 80(1 +
87
2000
) ×
1
2
80 × 1 + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1)
                                             = -
57129
200
+ 40(1 +
87
2000
)80 + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K
                                             = -
73129
200
+ 40(1 +
87
2000
) + 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
73129
200
+ 40 × 1 + 40 ×
87
2000
+ 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
                                             = -
73129
200
+ 40 +
87
50
+ 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
64781
200
+ 220((1 +
87
2000
) ×
1
2
1) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
64781
200
+ 220(1 +
87
2000
) ×
1
2
220 × 1 +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K
                                             = -
64781
200
+ 110(1 +
87
2000
)220 +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
108781
200
+ 110(1 +
87
2000
) +
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
108781
200
+ 110 × 1 + 110 ×
87
2000
+
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
108781
200
+ 110 +
957
200
+
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)
                                             = -
10728
25
+
43
2
((1 +
87
2000
) ×
1
2
1) +
1903
100
((1 +
87
2000
) ×
1
2
1) +
2
25
K ((1 +
87
2000
) ×
1
2
1)

    
        K≈-11722.516270 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。