| ( | 118 | + | 373 | ) | ÷ | 31 | × | x | + | 93 | ÷ | 31 | × | ( | x | + | 15 | ) | + | 93 | ÷ | 31 | × | ( | x | + | 30 | ) | = | 1721 |
| Left side of the equation = | ( | 118 | + | 373 | ) | × | 1 31 | x | + | 3 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| ( | 118 | + | 373 | ) | × | 1 31 | x | + | 3 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) | = | 1721 |
| Left side of the equation = | 118 | × | 1 31 | x | + | 373 | × | 1 31 | x | + | 3 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 118 31 | x | + | 373 31 | x | + | 3 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 491 31 | x | + | 3 | ( | x | + | 15 | ) | + | 3 | ( | x | + | 30 | ) |
| = | 491 31 | x | + | 3 | x | + | 3 | × | 15 | + | 3 | ( | x | + | 30 | ) |
| = | 491 31 | x | + | 3 | x | + | 45 | + | 3 | ( | x | + | 30 | ) |
| = | 584 31 | x | + | 45 | + | 3 | ( | x | + | 30 | ) |
| = | 584 31 | x | + | 45 | + | 3 | x | + | 3 | × | 30 |
| = | 584 31 | x | + | 45 | + | 3 | x | + | 90 |
| = | 677 31 | x | + | 135 |
677 31 | x | + | 135 | = | 1721 |
677 31 | x | = | 1721 | − | 135 |
677 31 | x | = | 1586 |
| x | = | 1586 | ÷ | 677 31 |
| = | 1586 | × | 31 677 |
| x | = | 49166 677 |
| x | = | 72.623338 |