Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [2.0029-(X-28.0401)]/2.0029 = 0.038 .
    Question type: Equation
    Solution:Original question:
     (
20029
10000
( X
280401
10000
)) ÷
20029
10000
=
19
500
    Remove the bracket on the left of the equation:
     Left side of the equation =
20029
10000
×
10000
20029
( X
280401
10000
) ×
10000
20029
                                             =
20029
20029
( X
280401
10000
) ×
10000
20029
                                             =
20029
20029
X ×
10000
20029
+
280401
10000
×
10000
20029
                                             =
20029
20029
X ×
10000
20029
+
280401
20029
                                             =
300430
20029
10000
20029
X
    The equation is transformed into :
     
300430
20029
10000
20029
X =
19
500

    Transposition :
      -
10000
20029
X =
19
500
300430
20029

    Combine the items on the right of the equation:
      -
10000
20029
X = -
149834449
10014500

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
149834449
10014500
=
10000
20029
X

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
10000
20029
X =
149834449
10014500

    The coefficient of the unknown number is reduced to 1 :
      X =
149834449
10014500
÷
10000
20029
        =
149834449
10014500
×
20029
10000

    We obtained :
      X =
3001034179021
100145000000
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。