Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x+2200+0.2(x+2200)+0.6(x+2200+0.2(x+2200)) = 23320 .
    Question type: Equation
    Solution:Original question:
      x + 2200 +
1
5
( x + 2200) +
3
5
( x + 2200 +
1
5
( x + 2200)) = 23320
    Remove the bracket on the left of the equation:
     Left side of the equation = x + 2200 +
1
5
x +
1
5
× 2200 +
3
5
( x + 2200 +
1
5
( x + 2200))
                                             = x + 2200 +
1
5
x + 440 +
3
5
( x + 2200 +
1
5
( x + 2200))
                                             =
6
5
x + 2640 +
3
5
( x + 2200 +
1
5
( x + 2200))
                                             =
6
5
x + 2640 +
3
5
x +
3
5
× 2200 +
3
5
×
1
5
( x + 2200)
                                             =
6
5
x + 2640 +
3
5
x + 1320 +
3
25
( x + 2200)
                                             =
9
5
x + 3960 +
3
25
( x + 2200)
                                             =
9
5
x + 3960 +
3
25
x +
3
25
× 2200
                                             =
9
5
x + 3960 +
3
25
x + 264
                                             =
48
25
x + 4224
    The equation is transformed into :
     
48
25
x + 4224 = 23320

    Transposition :
     
48
25
x = 233204224

    Combine the items on the right of the equation:
     
48
25
x = 19096

    The coefficient of the unknown number is reduced to 1 :
      x = 19096 ÷
48
25
        = 19096 ×
25
48
        = 2387 ×
25
6

    We obtained :
      x =
59675
6
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 9945.833333



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。