Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1÷(d+2)+1÷(d+0.5) = (2d-2)÷((d-1)×(d-1)+4) .
    Question type: Equation
    Solution:Original question:
     1 ÷ ( d + 2) + 1 ÷ ( d +
1
2
) = (2 d 2) ÷ (( d 1)( d 1) + 4)
     Multiply both sides of the equation by:( d + 2) ,  (( d 1)( d 1) + 4)
     1(( d 1)( d 1) + 4) + 1 ÷ ( d +
1
2
) × ( d + 2)(( d 1)( d 1) + 4) = (2 d 2)( d + 2)
    Remove a bracket on the left of the equation::
     1( d 1)( d 1) + 1 × 4 + 1 ÷ ( d +
1
2
) × ( d + 2)(( d 1)( d 1) + 4) = (2 d 2)( d + 2)
    Remove a bracket on the right of the equation::
     1( d 1)( d 1) + 1 × 4 + 1 ÷ ( d +
1
2
) × ( d + 2)(( d 1)( d 1) + 4) = 2 d ( d + 2)2( d + 2)
    The equation is reduced to :
     1( d 1)( d 1) + 4 + 1 ÷ ( d +
1
2
) × ( d + 2)(( d 1)( d 1) + 4) = 2 d ( d + 2)2( d + 2)
     Multiply both sides of the equation by:( d +
1
2
)
     1( d 1)( d 1)( d +
1
2
) + 4( d +
1
2
) + 1( d + 2)(( d 1)( d 1) + 4) = 2 d ( d + 2)( d +
1
2
)2( d + 2)( d +
1
2
)
    Remove a bracket on the left of the equation:
     1 d ( d 1)( d +
1
2
)1 × 1( d 1)( d +
1
2
) + 4( d +
1
2
) + 1( d + 2) = 2 d ( d + 2)( d +
1
2
)2( d + 2)( d +
1
2
)
    Remove a bracket on the right of the equation::
     1 d ( d 1)( d +
1
2
)1 × 1( d 1)( d +
1
2
) + 4( d +
1
2
) + 1( d + 2) = 2 d d ( d +
1
2
) + 2 d × 2( d +
1
2
)2( d + 2)( d +
1
2
)
    The equation is reduced to :
     1 d ( d 1)( d +
1
2
)1( d 1)( d +
1
2
) + 4( d +
1
2
) + 1( d + 2)(( d 1)( d 1) + 4) = 2 d d ( d +
1
2
) + 4 d ( d +
1
2
)2( d + 2)( d +
1
2
)
    Remove a bracket on the left of the equation:
     1 d d ( d +
1
2
)1 d × 1( d +
1
2
)1( d 1)( d +
1
2
) + 4 = 2 d d ( d +
1
2
) + 4 d ( d +
1
2
)2( d + 2)( d +
1
2
)
    Remove a bracket on the right of the equation::
     1 d d ( d +
1
2
)1 d × 1( d +
1
2
)1( d 1)( d +
1
2
) + 4 = 2 d d d + 2 d d ×
1
2
+ 4 d ( d +
1
2
)2
    The equation is reduced to :
     1 d d ( d +
1
2
)1 d ( d +
1
2
)1( d 1)( d +
1
2
) + 4( d +
1
2
) = 2 d d d + 1 d d + 4 d ( d +
1
2
)2( d + 2)
    Remove a bracket on the left of the equation:
     1 d d d + 1 d d ×
1
2
1 d ( d +
1
2
)1 = 2 d d d + 1 d d + 4 d ( d +
1
2
)2( d + 2)
    Remove a bracket on the right of the equation::
     1 d d d + 1 d d ×
1
2
1 d ( d +
1
2
)1 = 2 d d d + 1 d d + 4 d d + 4 d
    The equation is reduced to :
     1 d d d +
1
2
d d 1 d ( d +
1
2
)1( d 1) = 2 d d d + 1 d d + 4 d d + 2 d
    Remove a bracket on the left of the equation:
     1 d d d +
1
2
d d 1 d d 1 d = 2 d d d + 1 d d + 4 d d + 2 d
    Remove a bracket on the right of the equation::
     1 d d d +
1
2
d d 1 d d 1 d = 2 d d d + 1 d d + 4 d d + 2 d
    The equation is reduced to :
     1 d d d +
1
2
d d 1 d d
1
2
d = 2 d d d + 1 d d + 4 d d + 2 d
    Remove a bracket on the left of the equation:
     1 d d d +
1
2
d d 1 d d
1
2
d = 2 d d d + 1 d d + 4 d d + 2 d
    Remove a bracket on the right of the equation::
     1 d d d +
1
2
d d 1 d d
1
2
d = 2 d d d + 1 d d + 4 d d + 2 d
    The equation is reduced to :
     1 d d d +
1
2
d d 1 d d
1
2
d = 2 d d d + 1 d d + 4 d d + 2 d
    The equation is reduced to :
     1 d d d +
1
2
d d 1 d d
1
2
d = 2 d d d + 1 d d + 4 d d + 1 d
    Remove a bracket on the left of the equation:
     1 d d d +
1
2
d d 1 d d
1
2
d = 2 d d d + 1 d d + 4 d d + 1 d

    The solution of the equation:
        d1≈-1.114195 , keep 6 decimal places
        d2≈2.891973 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。