Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1447*3*(1+16*1014/(1014+2000)*1.2 ) = y .
    Question type: Equation
    Solution:Original question:
     1447 × 3(1 + 16 × 1014 ÷ (1014 + 2000) ×
6
5
) = y
    Remove a bracket on the left of the equation::
     1447 × 3 × 1 + 1447 × 3 × 16 × 1014 ÷ (1014 + 2000) ×
6
5
= y
    The equation is reduced to :
     4341 +
422570304
5
÷ (1014 + 2000) = y
     Multiply both sides of the equation by:(1014 + 2000)
     4341(1014 + 2000) +
422570304
5
= y (1014 + 2000)
    Remove a bracket on the left of the equation:
     4341 × 1014 + 4341 × 2000 +
422570304
5
= y (1014 + 2000)
    Remove a bracket on the right of the equation::
     4341 × 1014 + 4341 × 2000 +
422570304
5
= y × 1014 + y × 2000
    The equation is reduced to :
     4401774 + 8682000 +
422570304
5
= y × 1014 + y × 2000
    The equation is reduced to :
     
487989174
5
= 3014 y

    Transposition :
      - 3014 y = -
487989174
5

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
487989174
5
= 3014 y

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     3014 y =
487989174
5

    The coefficient of the unknown number is reduced to 1 :
      y =
487989174
5
÷ 3014
        =
487989174
5
×
1
3014
        =
243994587
5
×
1
1507

    We obtained :
      y =
243994587
7535
    This is the solution of the equation.

    Convert the result to decimal form :
      y = 32381.497943



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。