Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-2)(x-2)-(2x+1)(2x+1) = 0 .
    Question type: Equation
    Solution:Original question:
     ( x 2)( x 2)(2 x + 1)(2 x + 1) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = x ( x 2)2( x 2)(2 x + 1)(2 x + 1)
                                             = x x x × 22( x 2)(2 x + 1)(2 x + 1)
                                             = x x 2 x 2 x + 2 × 2(2 x + 1)(2 x + 1)
                                             = x x 2 x 2 x + 4(2 x + 1)(2 x + 1)
                                             = x x 4 x + 4(2 x + 1)(2 x + 1)
                                             = x x 4 x + 42 x (2 x + 1)1(2 x + 1)
                                             = x x 4 x + 42 x × 2 x 2 x × 1
                                             = x x 4 x + 44 x x 2 x 1(2 x + 1)
                                             = x x 6 x + 44 x x 1(2 x + 1)
                                             = x x 6 x + 44 x x 1 × 2 x 1
                                             = x x 6 x + 44 x x 2 x 1
                                             = x x 8 x + 34 x x
    The equation is transformed into :
      x x 8 x + 34 x x = 0

    After the equation is converted into a general formula, it is converted into:
    ( x + 3 )( 3x - 1 )=0
    From
        x + 3 = 0
        3x - 1 = 0

    it is concluded that::
        x1=-3
        x2=
1
3
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。