Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 26.28*270*36+20.97*270*(x-36) = 447*308+443*402-447*462-459*509 .
    Question type: Equation
    Solution:Original question:
     
657
25
× 270 × 36 +
2097
100
× 270( x 36) = 447 × 308 + 443 × 402447 × 462459 × 509
     Left side of the equation =
1277208
5
+
56619
10
( x 36)
    The equation is transformed into :
     
1277208
5
+
56619
10
( x 36) = 447 × 308 + 443 × 402447 × 462459 × 509
    Remove the bracket on the left of the equation:
     Left side of the equation =
1277208
5
+
56619
10
x
56619
10
× 36
                                             =
1277208
5
+
56619
10
x
1019142
5
                                             =
258066
5
+
56619
10
x
    The equation is transformed into :
     
258066
5
+
56619
10
x = 447 × 308 + 443 × 402447 × 462459 × 509
     Right side of the equation = 137676 + 178086206514233631
                                               = - 124383
    The equation is transformed into :
     
258066
5
+
56619
10
x = - 124383

    Transposition :
     
56619
10
x = - 124383
258066
5

    Combine the items on the right of the equation:
     
56619
10
x = -
879981
5

    The coefficient of the unknown number is reduced to 1 :
      x = -
879981
5
÷
56619
10
        = -
879981
5
×
10
56619
        = - 293327 ×
2
18873

    We obtained :
      x = -
586654
18873
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 31.0843



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。