Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.9*26.28*270*36+19.55*270*(x-36) = 308*443+0.9*402*440-462*443-0.9*509*459 .
    Question type: Equation
    Solution:Original question:
     
9
10
×
657
25
× 270 × 36 +
391
20
× 270( x 36) = 308 × 443 +
9
10
× 402 × 440462 × 443
9
10
× 509 × 459
     Left side of the equation =
5747436
25
+
10557
2
( x 36)
    The equation is transformed into :
     
5747436
25
+
10557
2
( x 36) = 308 × 443 +
9
10
× 402 × 440462 × 443
9
10
× 509 × 459
    Remove the bracket on the left of the equation:
     Left side of the equation =
5747436
25
+
10557
2
x
10557
2
× 36
                                             =
5747436
25
+
10557
2
x 190026
                                             =
996786
25
+
10557
2
x
    The equation is transformed into :
     
996786
25
+
10557
2
x = 308 × 443 +
9
10
× 402 × 440462 × 443
9
10
× 509 × 459
     Right side of the equation = 136444 + 159192204666
2102679
10
                                               = -
1192979
10
    The equation is transformed into :
     
996786
25
+
10557
2
x = -
1192979
10

    Transposition :
     
10557
2
x = -
1192979
10
996786
25

    Combine the items on the right of the equation:
     
10557
2
x = -
7958467
50

    The coefficient of the unknown number is reduced to 1 :
      x = -
7958467
50
÷
10557
2
        = -
7958467
50
×
2
10557
        = -
7958467
25
×
1
10557

    We obtained :
      x = -
7958467
263925
    This is the solution of the equation.

    Convert the result to decimal form :
      x = - 30.154275



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。