Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.9*26.28*270*84+19.55*270*(x-84) = 462*443+0.9*509*459-308*443-0.9*402*440 .
    Question type: Equation
    Solution:Original question:
     
9
10
×
657
25
× 270 × 84 +
391
20
× 270( x 84) = 462 × 443 +
9
10
× 509 × 459308 × 443
9
10
× 402 × 440
     Left side of the equation =
13410684
25
+
10557
2
( x 84)
    The equation is transformed into :
     
13410684
25
+
10557
2
( x 84) = 462 × 443 +
9
10
× 509 × 459308 × 443
9
10
× 402 × 440
    Remove the bracket on the left of the equation:
     Left side of the equation =
13410684
25
+
10557
2
x
10557
2
× 84
                                             =
13410684
25
+
10557
2
x 443394
                                             =
2325834
25
+
10557
2
x
    The equation is transformed into :
     
2325834
25
+
10557
2
x = 462 × 443 +
9
10
× 509 × 459308 × 443
9
10
× 402 × 440
     Right side of the equation = 204666 +
2102679
10
136444159192
                                               =
1192979
10
    The equation is transformed into :
     
2325834
25
+
10557
2
x =
1192979
10

    Transposition :
     
10557
2
x =
1192979
10
2325834
25

    Combine the items on the right of the equation:
     
10557
2
x =
1313227
50

    The coefficient of the unknown number is reduced to 1 :
      x =
1313227
50
÷
10557
2
        =
1313227
50
×
2
10557
        =
1313227
25
×
1
10557

    We obtained :
      x =
1313227
263925
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 4.975758



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。