Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [X/(X+1910-2987)-0.005]*1000 = 2.703 .
    Question type: Equation
    Solution:Original question:
     ( X ÷ ( X + 19102987)
1
200
) × 1000 =
2703
1000
    Remove a bracket on the left of the equation::
      X ÷ ( X + 19102987) × 1000
1
200
× 1000 =
2703
1000
    The equation is reduced to :
      X ÷ ( X + 19102987) × 10005 =
2703
1000
     Multiply both sides of the equation by:( X + 19102987)
      X × 10005( X + 19102987) =
2703
1000
( X + 19102987)
    Remove a bracket on the left of the equation:
      X × 10005 X 5 × 1910 + 5 × 2987 =
2703
1000
( X + 19102987)
    Remove a bracket on the right of the equation::
      X × 10005 X 5 × 1910 + 5 × 2987 =
2703
1000
X +
2703
1000
× 1910
2703
1000
× 2987
    The equation is reduced to :
      X × 10005 X 9550 + 14935 =
2703
1000
X +
516273
100
8073861
1000
    The equation is reduced to :
     995 X + 5385 =
2703
1000
X
2911131
1000

    Transposition :
     995 X
2703
1000
X = -
2911131
1000
5385

    Combine the items on the left of the equation:
     
992297
1000
X = -
2911131
1000
5385

    Combine the items on the right of the equation:
     
992297
1000
X = -
8296131
1000

    The coefficient of the unknown number is reduced to 1 :
      X = -
8296131
1000
÷
992297
1000
        = -
8296131
1000
×
1000
992297
        = - 8296131 ×
1
992297

    We obtained :
      X = -
8296131
992297
    This is the solution of the equation.

    Convert the result to decimal form :
      X = - 8.360532



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。