Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.507*(50+6.8Q)-0.493*(40+8.5Q) = 0 .
    Question type: Equation
    Solution:Original question:
     
507
1000
(50 +
34
5
Q )
493
1000
(40 +
17
2
Q ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
507
1000
× 50 +
507
1000
×
34
5
Q
493
1000
(40 +
17
2
Q )
                                             =
507
20
+
8619
2500
Q
493
1000
(40 +
17
2
Q )
                                             =
507
20
+
8619
2500
Q
493
1000
× 40
493
1000
×
17
2
Q
                                             =
507
20
+
8619
2500
Q
493
25
8381
2000
Q
                                             =
563
100
7429
10000
Q
    The equation is transformed into :
     
563
100
7429
10000
Q = 0

    Transposition :
      -
7429
10000
Q = 0
563
100

    Combine the items on the right of the equation:
      -
7429
10000
Q = -
563
100

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
563
100
=
7429
10000
Q

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
7429
10000
Q =
563
100

    The coefficient of the unknown number is reduced to 1 :
      Q =
563
100
÷
7429
10000
        =
563
100
×
10000
7429
        = 563 ×
100
7429

    We obtained :
      Q =
56300
7429
    This is the solution of the equation.

    Convert the result to decimal form :
      Q = 7.578409



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。