Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 100x+10(x+1)+3(x+1)-2+100[3(x+1)-2]+10(x+1)+x = 1171 .
    Question type: Equation
    Solution:Original question:
     100 x + 10( x + 1) + 3( x + 1)2 + 100(3( x + 1)2) + 10( x + 1) + x = 1171
     Left side of the equation = 101 x + 10( x + 1) + 3( x + 1)2 + 100(3( x + 1)2) + 10( x + 1)
    The equation is transformed into :
     101 x + 10( x + 1) + 3( x + 1)2 + 100(3( x + 1)2) + 10( x + 1) = 1171
    Remove the bracket on the left of the equation:
     Left side of the equation = 101 x + 10 x + 10 × 1 + 3( x + 1)2 + 100(3( x + 1)2) + 10
                                             = 101 x + 10 x + 10 + 3( x + 1)2 + 100(3( x + 1)2) + 10( x + 1)
                                             = 111 x + 8 + 3( x + 1) + 100(3( x + 1)2) + 10( x + 1)
                                             = 111 x + 8 + 3 x + 3 × 1 + 100(3( x + 1)2) + 10( x + 1)
                                             = 111 x + 8 + 3 x + 3 + 100(3( x + 1)2) + 10( x + 1)
                                             = 114 x + 11 + 100(3( x + 1)2) + 10( x + 1)
                                             = 114 x + 11 + 100 × 3( x + 1)100 × 2 + 10( x + 1)
                                             = 114 x + 11 + 300( x + 1)200 + 10( x + 1)
                                             = 114 x 189 + 300( x + 1) + 10( x + 1)
                                             = 114 x 189 + 300 x + 300 × 1 + 10( x + 1)
                                             = 114 x 189 + 300 x + 300 + 10( x + 1)
                                             = 414 x + 111 + 10( x + 1)
                                             = 414 x + 111 + 10 x + 10 × 1
                                             = 414 x + 111 + 10 x + 10
                                             = 424 x + 121
    The equation is transformed into :
     424 x + 121 = 1171

    Transposition :
     424 x = 1171121

    Combine the items on the right of the equation:
     424 x = 1050

    The coefficient of the unknown number is reduced to 1 :
      x = 1050 ÷ 424
        = 1050 ×
1
424
        = 525 ×
1
212

    We obtained :
      x =
525
212
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 2.476415



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。